Climate Ready North Bay Napa County

Project Overview and Sample Data Products January 2016

prepared by TBC3.org members Lorrie Flint (USGS), Sam Veloz (Point Blue), Lisa Micheli and Nicole Heller (Pepperwood's Dwight Center for Conservation Science)

Point Blue Conservation Science

Pepperwood Mission: to advance science-based conservation across our region and beyond

Pepperwood served as project manager of the Climate Ready North Bay vulnerability assessment with TBC3 partners including USGS, Point Blue Conservation Science, and University of California at Berkeley.

The new Dwight Center for Conservation Science

3200-acre reserve in Mayacamas, partnered with CA Academy of Sciences

Point Blue Conservation Science

Table of Contents

Project overview Climate model selection Basin Characterization Model (BCM) methods Regional data samples Napa Valley customized products Climate Ready Exchange on California Climate Commons

Project overview

Climate Ready North Bay: translating a landscape-level climate-hydrology database into inputs for long-term planning

Source: Climate Ready North Bay 2015

- Warmer temperatures
- Greater hydrologic variability
- Greater evapo-transpiration
- Increased water demand
- Variable runoff and groundwater recharge
- Shifts in natural vegetation types
- Increased wildfire risk
- (Not sea level rise!)

North Bay Climate Ready

Serving natural resource agencies in Marin, Sonoma, Napa and Mendocino Counties

Funding: a *Climate Ready* Coastal Conservancy grant to Sonoma's Regional Climate Protection Authority plus match funds from partners

Pepperwood is the lead analyst on vulnerability assessment with TBC3 members from USGS, and Point Blue Conservation Science, and University of California

project overview

North Bay Climate Ready User Groups and Partners

User Group 1: Sonoma County Water Agency with Mendocino County Water Conservation and Flood District

Domain: Sonoma County plus Russian River Basin of Mendocino County

User Group 2: Sonoma County Agricultural Protection and Open Space District and Sonoma County Regional Parks

Domain: Sonoma County

User Group 3: Napa County, Departments of Planning and Public Works plus the Watershed Protection District

Domain: Napa Valley

User Group 4: Marin Municipal Water District (MMWD)

Domain: Marin County

User Group 5: Regional Climate Protection Authority (RCPA) Municipal Users Group: all nine cities of Sonoma County-public works and planning officers Domain: Sonoma County and sub-watersheds

project overview

Climate Ready Process Part 1

Engage managers at the outset: define key management questions for each jurisdiction, and then refine questions through process.

First meeting: based on their concerns, managers selected one set of climate "futures" based on concerns-focus on "extreme cases" and central tendencies for entire North Bay region, with one "mitigated" emissions scenario for comparison.

project overview

Climate Ready Process Part 2

Managers survey: how does climate variability, including current drought, impact your operations today? What are your concerns for the future?

Agency-specific meetings to introduce our Basin Characterization Model, data menu and sample products, refine management questions and data queries via an iterative process.

Climate model selection

climate model selection

Selected Futures for North Bay Regional Vulnerability Assessment (in yellow)

Cooncrie			Assessment			Summer			Annual		% Change
scenario #		Emissions	Report		Summer	Tmax	Winter	Winter Tmin	Precipitation	% Change	Water
	Model	Scenario	Vintage	Time Period	Tmax °C	Increase	Tmin °C	Increase °C	(mm)	Precipitation	Deficit
	historic (hst)	N/A	N/A	1951-1980	27.9		3.9		1087		
	current	N/A	N/A	1981-2010	27.9		4.3	0.4	1095	1%	1%
	Assumption:	Business	as Usual								
6	miroc-esm	rcp85	AR5	2070-2099	34.0	6.1	8.4	4.6	865	-20%	24%
	miroc3_2_mr	A2	AR4	2070-2099	33.0	5.1	7.1	3.2	887	-18%	20%
	ipsl-cm5a-lr	rcp85	AR5	2070-2099	33.0	5.0	9.6	5.7	1325	22%	16%
	fgoals-g2	rcp85	AR5	2070-2099	32.3	4.3	7.1	3.2	1099	1%	22%
5	cnrm-cm5	rcp85	AR5	2070-2099	31.9	4.0	7.7	3.9	1477	36%	12%
4	GFDL	A2	AR4	2070-2099	31.7	3.8	7.7	3.9	861	-21%	21%
3	ccsm4	rcp85	AR5	2070-2099	31.4	3.5	7.1	3.2	1163	7%	12%
2	PCM	A2	AR4	2070-2099	30.6	2.6	6.3	2.4	1159	7%	11%
			Business as L	Jsual Average	32.2	4.3	7.6	3.7	1104	2%	17%
	Assumption:	Mitigated	1								
	miroc-esm	rcp60	AR5	2070-2099	32.6	4.7	7.1	3.2	922	-15%	14%
	giss_aom	A1B	AR4	2070-2099	30.9	3.0	6.4	2.5	1104	2%	11%
	csiro_mk3_5	A1B	AR4	2070-2099	30.8	2.8	6.5	2.6	1506	38%	4%
			Mitig	ated Average	31.4	3.5	6.6	2.8	1177	8%	10%
	Assumption:	Highly M	itigated								
	mpi-esm-Ir	rcp45	AR5	2070-2099	30.1	2.2	5.8	1.9	1148	6%	5%
	miroc-esm	rcp45	AR5	2070-2099	30.1	2.2	6.9	3.0	949	-13%	14%
1	GFDL	B1	AR4	2070-2099	30.1	2.2	6.1	2.2	923	-15%	10%
	PCM	B1	AR4	2070-2099	29.5	1.6	5.5	1.7	1197	10%	5%
			Highly Mitig	ated Average	30.0	2.1	6.1	2.2	1055	-3%	8%
	Assumption:	Super Mi	tigated								
	miroc5	rcp26	AR5	2070-2099	29.8	1.9	5.2	1.3	953	-12%	9%
	mri-cgcm3	rcp26	AR5	2070-2099	29.2	1.3	4.8	0.9	1315	21%	2%
	giss-e2-r	rcp26	AR5	2070-2099	28.4	0.4	4.6	0.7	1344	24%	-4%
			Super Mitig	ated Average	29.1	1.2	4.8	1.0	1204	11%	2%
			ALL Scen	arios Average	31.1	3.2	6.7	2.8	1122	3%	11%

TBC3 downscaled 18 global climate models selected to represent the full range of IPCC projections. 6 were selected by a consensus of all the managers engaged in Climate Ready. Scenario numbers correlate to chart version of the North Bay TBC3 ensemble.

North Bay Climate Ready: Selected Futures for Regional Vulnerability Assessment map products in red, daily products available for Russian River basin only

Climate Ready North Bay Scenarios 6 selected futures: monthly values, observed vs mid-century

	Model	Emissions Scenario	IPCC Assessment	Short-hand name	Time Period	Summer Tmax °F	Summer Tmax Increase °F	Winter Tmin °F	Winter Tmin Increase °F	Annual Precipitation (in)	% Change Precipitation	% Change Water Deficit
Observed	historical baseline	N/A	N/A		1951-1980	82.2		39.0		42.8		
	current	N/A	N/A		1981-2010	82.2		39.7	0.7	43.1	1%	1%
Scenario #												
1	GFDL	B1	AR4	low warming- low rainfall	2040-2069	85.2	2.9	42.7	3.7	42.6	-1%	6%
2	РСМ	A2	AR4	low warming- mod rainfal	2040-2069	85.0	2.7	41.1	2.1	43.8	2%	7%
3	CCSM-4	rcp85	AR5	warm-mod rainfall	2040-2069	86.0	3.7	42.0	3.0	42.2	-1%	8%
4	GFDL	A2	AR4	warm-low rainfall	2040-2069	86.3	4.0	43.2	4.2	39.8	-7%	12%
5	CNRM-CM5	rcp85	AR5	warm-high rainfall	2040-2069	86.5	4.2	43.0	4.0	53.8	26%	6%
6	MIROC-ESM	rcp85	AR5	hot-low rainfall	2040-2069	89.2	6.9	41.4	2.4	35.0	-18%	14%
Average						86.3	4.1	42.2	3.2	42.9	0%	9%

Climate Ready North Bay Scenarios 6 selected futures: monthly values, observed vs end-century

Climate Re	eady North Bay: 6 Selected Futures for North Bay Regional Analysis-End of Century Values											
	Model	Emissions Scenario	IPCC Assessment	Short-hand name	Time Period	Summer Tmax °F	Summer Tmax Increase °F	Winter Tmin °F	Winter Tmin Increase °F	Annual Precipitation (in)	% Change Precipitation	% Change Water Deficit
Observed	historical baseline	N/A	N/A		1951-1980	82.2		3.9		42.8		
	current	N/A	N/A		1981-2010	82.2		4.3	0.4	43.1	1%	1%
Projections												
1	GFDL	B1	AR4	low warming- low rainfall	2070-2099	86.2	4.0	6.1	2.2	36.3	-15%	10%
2	РСМ	A2	AR4	low warming- mod rainfal	2070-2099	87.0	4.7	6.3	2.4	45.6	7%	11%
3	CCSM-4	rcp85	AR5	warm-mod rainfall	2070-2099	88.5	6.2	7.1	3.2	45.8	7%	12%
4	GFDL	A2	AR4	warm-low rainfall	2070-2099	89.1	6.9	7.7	3.9	33.9	-21%	21%
5	CNRM-CM5	rcp85	AR5	warm-high rainfall	2070-2099	89.5	7.2	7.7	3.9	58.1	36%	12%
6	MIROC-ESM	rcp85	AR5	hot-low rainfall	2070-2099	93.3	11.0	8.4	4.6	34.0	-20%	24%
Average						88.9	6.7	7.2	3.3	42	0.0	15%

USGS Basin Characterization Model (BCM) methods

- Directly through alluvial valley where shallow to water table
- Streambed losses
- May return to stream via baseflow

Size of arrows reflect relative magnitude of water flow

Flint and Flint 2013

Brown text is BCM input, Purple text is BCM output

USGS California Basin Characterization Model: translating climate to watershed response

BCM methods

BCM output: Climatic Water Deficit

Annual evaporative demand that exceeds available water= drought stress

Potential – Actual Evapotranspiration

Integrates climate, energy loading, drainage, and available soil moisture storage Vegetation independent (indicator) Surrogate for irrigation demand Generally increases with all future climate scenarios

.

Correlates with vegetation type and fire risk

BCM methods

Data menu

Primary (BCM outputs):

climate and hydology-temperature, rainfall, runoff, groundwater recharge, evapo-transpiration, soil moisture, climatic water deficit

Secondary:

Fire frequency (either percent likelihood of burn or return interval) Potential native vegetation transitions

Time scales-historical (1910-2010) and projected (2010-2100)

30-y averages Annual data Monthly/Seasonal data

Spatial scales

Regional summaries-whole North Bay study area County Summaries

Sub-regions-watershed, landscape unit, service area

Large parcels

Menu

Regional data

Regional data samples

- Cover entire North Bay Climate Ready Study Area (Russian River basin, Sonoma County, Marin County, Napa Valley)
- Show primary temperature and rainfall outputs from CA Basin Characterization Model (USGS)
- Put local results in regional context and facilitates regional planning

Maximum summer temperature (monthly avg) (degF) 30-year average, current-1981-2010

82.2 deg F average

Projected Maximum Summer Air Temperature, 2040-2069

86.4 average86.0 average89.2 average+4.2 deg F+3.8 deg F+7.0 deg F

"business as usual" mid-century temperatures-30 y monthly average

Projected Maximum Summer Air Temperature, 2070-2099

+7.2 deg F

+6.3 deg F

93.4 average +11.2 deg F

"business as usual" end of century temperatures-30 y monthly average

Minimum winter temperature (monthly) (degF) 30-year average, current-moderate warming (projected) (mod rainfall scenario)

Current 1981-2010 39.7 average

Projected 2040-2069 43.0 average

Projected 2070-2099 44.8 average

5.1 degF greater by end of century than current

Minimum winter temperature (monthly) (degF) 30-year average, current-high warming (projected)

39.7 average

44.1 average

47.3 average

8.6degF greater by end of C than current, 2.5 degF greater than moderate warming scenario

Precipitation (PPT) 30 year average Historic 1951-1980 Regional average 43 in/y

Precipitation (PPT, annual in/y) 30-year average, current to projected-low rainfall

(hot scenario)

Current 1981-2010 43.0 average Projected 2040-2069 35.0 average Projected 2070-2099 34.0 average

projecting 19-21% less rainfall than current

Precipitation (PPT, annual in/y) 30-year average, current to projected-high rainfall

(warm scenario)

Current 1981-2010 43.0 average Projected 2040-2069 54.0 average Projected 2070-2099 58.0 average

projecting 25-35% greater rainfall than current

Basin Characterization Model: North Bay Region Trends in 30-year average values, historic-2099

				Moderate Warming,		Moderate Warming,			
		Historical	Current	High Rainfall		Moderate Rainfall		Hot, Low Rainfall	
Variable	Units	1951-1980	1981-2010	2040-2069	2070-2099	2040-2069	2070-2099	2040-2069	2070-2099
Ppt	in	43	43	54	58	42	46	35	34
Tmn	Deg F	38.8	39.7	43.0	45.9	41.9	44.8	44.1	47.3
Tmx	Deg F	82.2	82.2	86.4	89.4	86.0	88.5	89.2	93.4
CWD	in	28	28	30	31	30	31	32	35
Rch	in	11	10	13	13	11	11	8	9
Run	in	14	14	23	27	14	17	10	9
					Per	ent			
				Moderate	Warming,	Moderate	Warming,		
		Historical	Current	High R	ainfall	Moderat	e Rainfall	Hot, Low Rainfall	
Variable	Units	1951-1980	1981-2010	2040-2069	2070-2099	2040-2069	2070-2099	2040-2069	2070-2099
Ppt	in	43	43	25%	35%	-2%	6%	-19%	-21%
Tmn	Deg F	38.8	39.7	8%	15%	5%	13%	11%	19%
Tmx	Deg F	82.2	82.2	5%	9%	5%	8%	9%	14%
CWD	in	28	28	5%	10%	7%	11%	12%	22%
Rch	in	11	10	25%	29%	4%	6%	-20%	-17%
Run	in	14	14	61%	90%	-1%	22%	-32%	-34%

VARIABLES: Ppt=precipitation, Tmn=minimum winter temperature (monthly), Tmx=maximum summer temperature (monthly), CWD=climatic water deficit, Rch=recharge, Run=runoff

USGS, Point Blue, Pepperwood 2015

Management Question

How is climate change projected to impact the variability of regional annual rainfall relative to the historic record?

North Bay Climate Ready Regional Annual Rainfall: Historical and Projected

(comparison of 90-year periods)

* 10th and 90th percentile benchmarks based on 1920-2009 record

North Bay Annual Rainfall Projections (2010-2099)

Precipitation (in/yr)

Climate Ready North Bay Annual Rainfall Extremes per Decade

Frequ	ency of extreme an	nual event					
псчи	ency of extreme an		Annual Pea	iks (floods)	Annual Lows (droughts)		
				>=1940	>90th %	<10th %	<=1976
Scenario #	Model	Time Period	Name	(69.1 in/yr)	(56.4 in/yr)	(27.1 in/yr)	(15.9 in/yr)
	Historic & Observed Change	1920-2009		0.22	1.00	1.00	0.11
1	GFDL_B1	2010-2099	Low warming, Low rainfall	0.56	1.44	2.00	0.00
2	PCM_A2	2010-2099	Low warming, Mod rainfall	0.67	2.56	1.89	0.33
3	CCSM4_rcp85	2010-2099	Warm, Mod rainfall	0.56	2.11	1.11	0.00
4	GFDL_A2	2010-2099	Warm, Low rainfall	0.33	1.11	2.56	0.33
5	CNRM_rcp85	2010-2099	Warm, High rainfall	2.11	4.56	0.67	0.00
6	MIROC_rcp85	2010-2099	Hot, Low rainfall	0.00	0.44	1.56	0.11

Percent increase or decrease (projected relative to 1920-2009):

Frequency extreme annual events per decade

	-		Annual Peaks (floods)				Annual Lows (droughts)		
				>=1940	>90th %	<10th %	<=1976		
Scenario #	Model	Time Period	Name	(69.1 in/yr)	(56.4 in/yr)	(27.1 in/yr)	(15.9 in/yr)		
	Historic & Observed Change	1920-2009							
1	GFDL_B1	2010-2099	Low warming, Low rainfall	150%	44%	100%	-100%		
2	PCM_A2	2010-2099	Low warming, Mod rainfall	200%	156%	89%	200%		
3	CCSM4_rcp85	2010-2099	Warm, Mod rainfall	150%	111%	11%	-100%		
4	GFDL_A2	2010-2099	Warm, Low rainfall	50%	11%	156%	200%		
5	CNRM_rcp85	2010-2099	Warm, High rainfall	850%	356%	-33%	-100%		
6	MIROC_rcp85	2010-2099	Hot, Low rainfall	-100%	-56%	56%	0%		
			Average	217%	104%	63%	17%		

* 10th and 90th percentile benchmarks based on 1920-2009 record

Management Question

How is climate change projected to impact the variability of regional annual rainfall relative to the historic record?

Talking points:

Using the 90th percentile of the annual rainfall record from 1920-2009 as a threshold for "high" rainfall years, four out of five models project increases in the frequency of high rainfall years for 2010-2099. Estimated increases in frequency of high rainfall years range from approximately 40-350%, with only the extreme "hot and low rainfall" scenario 6 projecting a reduction in frequency of high rainfall years. The average frequency increase across all models is approximately 100% (equivalent to a doubling of the current frequency of high rainfall events).

Using the 10th percentile of the annual rainfall record from 1920-2009 as a threshold for "low" rainfall years, four out of five models project increases in the frequency of low rainfall years for 2010-2099. Estimated increases in frequency of low rainfall years range from approximately 10-100%, with only the extreme "high rainfall" scenario 5 projecting a reduction in frequency of low rainfall years. The average frequency increase for low rainfall years across all models is approximately 60%.

Thus, the majority of projections suggest that climate change will increase the frequency of **both** high and low rainfall years in the coming century.

Napa Valley Basin Characterization Model Outputs

Basin Characterization Model: Napa Valley Watershed Trends in 30-year average values, historic-2099

Variable	Units	Historical	Current	Moderate Warming, High Rainfall		Moderate V Moderate	Varming, Rainfall	Hot, Low Rainfall		
		1951-1980	1981-2010	2040-2069	2070-2099	2040-2069	2070-2099	2040-2069	2070-2099	
Ppt	in	35.6	36.4	44.8	48.6	35.1	38.2	28.7	27.7	
Tmn	Deg F	38.4	39.4	42.8	45.9	41.6	44.4	43.6	46.7	
Tmx	Deg F	86.6	86.5	90.9	93.9	90.5	93.1	93.8	98.0	
CWD	in	30.2	30.6	31.9	33.4	32.3	33.6	34.3	36.8	
Rch	in	10.9	10.6	13.4	13.4	10.5	11.1	7.5	7.8	
Run	in	7.1	7.8	13.0	16.1	6.9	9.5	4.3	3.8	

VARIABLES: Ppt=precipitation, Tmn=winter minimum temperature (monthly), Tmx=summer maximum temperature (monthly), CWD=climatic water deficit, Rch=recharge, Run=runoff

USGS, Point Blue, Pepperwood 2015

Basin Characterization Model: Napa Valley Watershed Comparison of 30-year average values, historic-2099

			Projected change in temperature (Deg F) and hydrologic indicators (%)										
Variable	Units	Current	Moderate Warming, High Rainfall		Moderate Moderate	Warming, e Rainfall	Hot, Low Rainfall						
		1981-2010	2040-2069	2070-2099	2040-2069	2070-2099	2040-2069	2070-2099					
Ppt	in	36.4	+ 23%	+ 34%	-3%	+ 5%	-21%	-24%					
Tmn	Deg F	39.4	+3.4	+ 6.4	+ 2.1	+ 4.9	+4.2	+ 7.3					
Tmx	Deg F	86.5	+4.4	+ 7.4	+ 4.0	+ 6.6	+ 7.3	+ 11.5					
CWD	in	30.6	+4%	+ 9%	+6%	+10%	+12%	+ 20%					
Rch	in	10.6	+27%	+ 27%	-1%	+ 5%	-29%	-27%					
Run	in	7.8	+ 67%	+107%	-11%	+ 22%	-44%	-51%					

VARIABLES: Ppt=precipitation, Tmn=winter minimum temperature, Tmx=summer maximum temperature, CWD=climatic water deficit, Rch=recharge, Run=runoff

USGS, Point Blue, Pepperwood 2015
How does rainfall variability translate to variability in Napa Valley watershed-wide water availability and potential delivery to reservoirs?

Napa Valley Runoff 1981-2010 7.8 inches runoff/yr

inches/year

Projected Runoff, 2040-2069

13 in/y average67% greater than current

6.9 in/y average11% less than current

4.3 in/y average44% less than current

Projected Runoff, 2070-2099

16.0 in/y average107% greater than current

9.5 in/y average22% greater than current

3.8 in/y average51% less than current

Napa River Valley Annual Runoff historical vs 6 model projections

•Four out of five of the modeled futures project the same or more annual runoff peaks than the historic record (compared to 1983 historic max)

•Only Scenario 6 (hot, low rainfall) projects fewer runoff peaks, with projected max values on the order of the historic mean

Water Supply Indicator Recharge + Runoff 1981-2010

Water Supply: Recharge and Runoff projections, 30-y summaries

			Current	Moderate Warming, High Rainfall		Moderate Warming, Moderate Rainfall		Hot, Low Rainfall	
Rch+Run (acre-ft)		Area (acres)	1981-2010	2040-2069	2070-2099	2040-2069	2070-2099	2040-2069	2070-2099
Mountains	total	452,476	243,131	344,656	392,444	233,723	272,710	163,522	160,806
	\$D		58,769	71,890	76,404	56,910	59,658	45,580	46,690
	% change			42%	61%	-4%	12%	-33%	-34%
Valley floor	total	189,418	59,142	89,894	107,424	53,860	67,413	33,201	31,061
	SD		21,889	28,335	30,616	22,300	23,755	17,066	17,567
	% change			52%	82%	-9%	14%	-44%	-47%

Water Supply Indicator projections generated for each reservoir drainage area-30 y averages

Poconyoir Attribu	Current	Scenario 5-Warm, High Rainfall		Scenario 3- Warm, Mod Rainfall		Scenario 6, Hot, Low		
Reservoir Attributes						Current	Rainfall	
NAME	Area (acres)	1981-2010	mid-century	end-century	mid-century	end-century	mid-century	end-century
Kimball Reservoir	2,159	5,243	7,568	8,450	5,308	5,981	3,826	3,812
Bell Canyon Reservoir	3,526	6,737	9,928	11,194	6,800	7,776	4,776	4,722
Conn Creek - Upper Reach	2,622	5,014	7,233	8,168	4,906	5,629	3,407	3,355
Moore Creek	4,571	8,347	11,819	13,377	8,034	9,287	5,607	5,537
Chiles Creek - Main Fork	4,125	7,216	10,110	11,451	6,868	7,955	4,792	4,730
Conn Creek - Main Fork	4,435	7,312	10,697	12,240	7,092	8,325	4,849	4,745
Conn Creek - East Fork	1,531	2,579	3,768	4,305	2,498	2,921	1,700	1,666
Chiles Creek - East Fork	1,720	2,941	4,047	4,581	2,746	3,186	1,914	1,891
Elder Valley Creek	1,845	2,637	3,602	4,116	2,386	2,816	1,628	1,600
Sage Creek	4,246	6,977	9,568	10,852	6,485	7,563	4,532	4,473
Lake Hennessey	5,164	7,355	12,137	13,812	8,214	9,625	5,772	5,679
Clear Creek	1,485	2,405	3,361	3,827	2,253	2,632	1,548	1,522
Fir Canyon	1,565	2,904	3,769	4,255	2,606	3,022	1,856	1,839
Rector Reservoir	6,971	12,886	18,197	20,491	12,656	14,639	9,112	9,000
Milliken Reservoir	6,141	9,829	14,053	16,089	9,285	11,017	6,322	6,122
All Reservoirs Average	3,474	6,026	8,657	9,814	5,876	6,825	4,109	4,046
% change from current			44%	63%	-2%	13%	-32%	-33%

Napa Valley: Recharge and Runoff Comparison

Annual Values-Water Supply Napa Mountains

Annual Values-Water Supply Valley Floor

What are the potential impacts of climate change on the flow regime of the Napa River?

Napa River Discharge BCM calibration to stream flow data

Napa River Flow Upstream Calistoga and Saint Helena Gages

Napa River Annual Flows: Napa Gage

- The alluvial valley widens, soils are deeper in the downstream direction
- With warming there is additional room in the soils to store rainfall, less runs off, a larger fraction becomes recharge
- This translates into smaller peaks compared to upstream and potential for a larger fraction of baseflow

Runoff can be translated to annual or monthly in-river flows at a gage

What is the potential increase in flood risks from drainages that exit into urban areas of the Napa Valley prone to flooding?

Napa River Upstream Winter peaks (Dec-Jan-Feb)

1969 is reference peak "year" of historical record

Napa River Downstream Winter peaks (Dec-Jan-Feb)

1986 is reference peak "year" of historical record

Scenario 5 Warm & **High Rainfall**

> Napa River near Napa 5000 <- Historical | Future -> 4500 4000 3500 -2.8991x+1141.5 cfs 3000 Discharge, (2500 +02000 1500 1000 500

Scenario 3 Warm & **Moderate** Rainfall

Hot &

Napa Tributaries that Flood

exceeding historical threshold in

2 years exceed threshold

1983 is reference peak "year" of historical record

Hot & Low Rainfall

Warm &

Rainfall

Moderate

None exceed threshold

How will climate changes potentially impact the hydrology of high value main stem reaches and tributaries for fish?

Napa River: Saint Helena and Napa Gages Summer low flows (Aug-Sep-Oct)

Napa Fisheries Tributaries Recharge plus Runoff in acre-feet, 30-y time steps

		-	Scenario	Warm, Hig	gh Rainfall	Warm, Mo	od Rainfall	He	ot, Low Rainfa	11
Fish Bearing Stream Name	Area		1981-2010	mid-century	end-century	mid-century	end-century	mid-century	end-century	end-century
	(acres)		(acre-feet/yr)	% change						
Garnett Creek	4	780	120022	176393	198605	121283	137948	85508	84781	-29%
Napa River - Upper Calistoga Reach	1	507	30282	45270	51887	30024	34739	20332	19917	-34%
Simmons Canyon Creek	20	087	48547	70820	80026	48488	55421	34076	33726	-31%
Selby Creek	3	755	86229	126050	142448	85918	98425	60087	59325	-31%
Blossom Creek	24	442	49295	72873	83497	48337	55915	32749	32144	-35%
Cyrus Creek	18	888	41404	59477	67792	39906	46013	27508	27025	-35%
Kortum Canyon Creek	1	799	44252	62692	70676	43329	49366	30840	30521	-31%
Bell Creek	20	673	52945	79733	91040	53214	62142	36718	36092	-32%
Ritchie Creek	1	536	38698	54321	61449	37118	42501	25960	25596	-34%
Mill Creek	14	410	34545	47784	54213	32464	37386	22671	22304	-35%
York Creek	2	509	60831	82908	94223	56268	65151	39356	38785	-36%
Napa River - Lower St. Helena Reach	43	381	69199	105269	123662	65947	80203	42718	40707	-41%
Sulphur Creek - Main Fork	34	428	92821	122412	138120	85117	97612	61182	60582	-35%
Conn Creek - Lower Reach	72	298	115363	170126	199131	108644	131510	72051	69166	-40%
Heath Creek	1	782	48299	64577	72682	45048	51628	32523	32223	-33%
Bear Creek	6	142	124454	174639	200881	116567	137505	80865	79044	-36%
Dry Creek	12	728	287807	394976	451298	268022	314045	188026	184618	-36%
Soda Creek	29	966	53081	78056	89041	52806	62382	37063	36399	-31%
Hopper Creek	30	003	43527	61690	72938	38674	47568	24748	23667	-46%
Milliken Creek - Main Fork	50	695	76765	113104	132056	71604	88155	47527	45718	-40%
Redwood Creek - Upper Reach	44	485	107863	146929	168481	99447	116968	69157	67376	-38%
Pickle Canyon	18	807	41423	55046	63231	37087	43854	25699	25135	-39%
Sarco Creek	53	398	64364	97206	115271	59412	74474	37532	35239	-45%
Carneros Creek	5	710	90805	128544	151488	81394	100362	53185	50928	-44%
Tulucay Creek	80)58	113506	163566	190459	107216	130370	72190	69996	-38%
Huichica Creek	40	028	57300	84348	99601	53240	66078	34723	33282	-42%
Average Values			76678	109185	125546	72561	85682	49807	48627	-37%
Percent Change				42%	64%	-5%	12%	-35%	-37%	

What is the spatial variability in potential groundwater recharge and where are high value recharge zones located? How will climate change impact potential groundwater recharge in the Napa Valley?

Napa River Valley Groundwater Recharge

Map time series, current to end of century, Scenario 6-hot and low rainfall

BCM recharge layers shows the spatial distribution of high versus low recharge value

Napa River Valley Groundwater Recharge

Mid- and end-century change compared to current, Scenario 6-hot and low rainfall

11 in/y average for valley

29% reduction

27% reduction to 7.5 in/y average for valley to 7.8 in/y average for valley

Low rainfall scenario results in losses of 2.5 inches of groundwater recharge per unit area annually

Napa Valley: Recharge and Runoff Comparison

Warm and high rainfall future Recharge 10 in/yr Runoff 15 in/yr

Warm and mod rainfall future Recharge 11 in/yr Runoff 8 in/yr

Hot and low rainfall future Recharge 8 in/yr Runoff 4 in/yr

What is the spatial variability in potential groundwater recharge and where are high value recharge zones located? How will climate change impact potential groundwater recharge in the Napa Valley?

Talking Points:

•The valley-wide average for groundwater recharge estimated for 1981-2010 is 11 in/y.

•Potential groundwater recharge ranges includes highs of 20-30 in/y in alluvial fans located in the Northern end of the valley and at the flanks of the Eastern Mayacamas.

•Recharge lows are estimated at <2.5 inches per year in the most high elevation, resistant bedrock in both the Mayacamas and Berryessa Ranges.

•On the valley floor, groundwater recharge rates vary from 7.5-12.5 in/y in the Northern Valley, and 2.5-12.5 in/y in the Southern Valley.

•Low rainfall climate change scenarios have the potential to reduce rates of groundwater recharge up to approximately 30%, or 2.5 in/y.

How will climate change potentially impact the seasonality of the Napa Valley's water cycle?

Seasonal Water Diagram 2070-2099

Seasonality of Water Cycle

1980-2009	Annual Average	
РРТ	25.9	in
CWD	19.8	in
AET	13.0	in
Runoff	8.2	in
Recharge	4.8	in
Recharge/runoff	0.58	
Tmax	59.2	F
Tmin	41.7	F

2070-2099	Annual Average	
РРТ	20.8	in
CWD	23.8	in
AET	11.1	in
Runoff	6.4	in
Recharge	3.4	in
Recharge/runoff	0.53	
Tmax	63.7	F
Tmin	45.5	F

Coming soon: Climate Smart Watershed Analyst *climate.calcommons.org*

How will the agricultural lands of the Napa Valley be potentially impacted by climate change in terms of irrigation demand?

Climatic Water Deficit, Hot and Low Rainfall

31 in/y average (36 in/y rainfall)

34 in/y average (29 in/y rainfall)

37 in/y average (28 in/y rainfall)

Water deficits increase in even high rainfall scenarios

Climatic Water Deficit on Napa Agricultural Lands

Warm &

Rainfall

Scenario 6

Hot &

last 30 years 9 % greater deficit

last 30 years 10 % greater deficit

last 30 years 20 % greater deficit

Potential native vegetation responses to changing climate

What will be the impact of climate change on important upland vegetation types and can you identify potentially stable vegetation communities for conservation planning?

what might the Bay Area vegetation of the future look like?

Landscape Units defined by Bay Area Upland Habitat Goals Project (2011)

Equilibrium vegetation response to climate change in Napa County

Projected proportional landscape cover of 22 vegetation types under both historical conditions and six future scenarios, organized from top to bottom by increasing temperature. This is an equilibrium model so this assumes vegetation has had time to adjust to climate conditions. In reality, vegetation turnover will take time. Fires and other disturbance can accelerate shifts. How land is managed will also affect rate of change. For example, grasslands may be maintained by active grazing, burning or mowing. Data from D.D. Ackerly 2015.

increasing temperature

Blue Ridge Berryessa

there can be significant differences between landscape units

Another way to look at the vegetation data:

Example: Redwood Forest is sensitive to temperature in Northern Mayacamas

effect

Significant declines emerge at hotter temperatures.

Four-square diagrams

The position in the square reflects the temperature and rainfall of a scenario

fall	warm < 4.5°F more rain	hot > 4.5°F more rain
Rain	warm <4.5°F less rain	hot > 4.5°F less rain

Color-coding the square quadrants shows the direction of change in percent cover in suitable climate for veg type (current to 2050) **Red: Dramatic Decline** (<25% of current) **Orange: Moderate Decline** (25-75% of current) Gray: Relative Stability (75-125% of current) **Green:** Increase (>125% of current)

Temperature

Example: California Bay Forest is not sensitive to temperature

or rainfall

Does well in all future scenarios regardless of
Warming magnitude and rainfall

Example: Oregon Oak is sensitive to rainfall in Northern Mayacamas

Does well in high rainfall scenarios, but declines in low rainfall

Does worse in hotter scenarios, But impacts are not great.

Example: Canyon Live Oak is sensitive to rainfall and temperature in Northern Mayacamas

It shows declines in all scenarios

Four Square Diagrams: The prognosis for the 22 vegetation types in each landscape unit are shown below divided into 4 climate scenarios. Comparing the landscape units reveals differential vulnerability of vegetation across Napa County.

The color shows a percent cover be Red: Dramatic Decli Orange: Moderate D Gray: Relative Stabil Green: Increase	the direction of change tween current and 20 ne (<25% of cur Decline (25-75% of c (75-125% of cur (>125% of cur	ge in)50. rrent) current) current) urrent)	The position shows Terr Warm < 4 High rain Warm < 4 Low rain	the scenario perature .5°F Hot > 4.5°F High rain .5°F Hot > 4.5°F Low rain	
	Northern Mayacamas	Southern Mayacamas	Vaca Mountains West	Blue Ridge Berryessa	Napa Valley
Redwood Forest					
Douglas Fir Forest					
Ponderosa Pine Forest Nonmaritime					
Knobcone Pine Forest					
Tanoak Forest					
Canyon Live Oak Forest					
Black Oak Forest Woodland					
Oregon Oak Woodland					
Blue Oak Forest Woodland	—				

Modeled fire risks in Napa Valley

Management Question

What will be the impact of climate change on the potential fire frequencies in the Napa Valley? Statewide Fire Risk Model: BCM data inputs

Spatial Patterns in Explanatory Climate Variables 1971–2000

Krawchuk and Moritz 2012 PIER report

Change in Projected Probability of Burning One or More Times

Fire return intervals cut by up to 30%

Urban and agricultural areas masked out

			Hot, Low	Moderate
		Current	Rainfall	Rainfall
Variable	Units	1971-2000	2070-2099	2070-2099
	Years	129	119	87
Fire return interval	SD	19	36	13

Change in Projected Probability of Burning One or More Times

Probability of fire doubles in some locations

Urban and agricultural areas masked out

			Hot, Low	Moderate
		Current	Rainfall	Rainfall
Variable	Units	1971-2000	2070-2099	2070-2099
Probability of burning 1	Percent	21%	22%	29%
or more times	SD	2%	5%	3%